邮箱登录 | 所务办公 | 收藏本站 | English | 中国科学院
 
首页 计算所概况 新闻动态 科研成果 研究队伍 国际交流 技术转移 研究生教育 学术出版物 党群园地 科学传播 信息公开
国际交流
学术活动
交流动态
现在位置:首页 > 国际交流 > 学术活动
Novel computational methods towards understanding nucleic acid – protein interactions
2019-07-18 | 【 【打印】【关闭】

  Abstract:

  Biological molecules perform their functions through interaction with other molecules. Nucleic acid (DNA and RNA) – protein interaction is behind the majority of biological processes, such as DNA replication, transcription, post-transcription regulation, and translation. In this talk, I will introduce our work on developing two novel computational methods towards understanding nucleic acid – protein interactions. The first one is a structural alignment method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures to detect their structural similarity. The second one is a deep learning-based computational framework, NucleicNet, that predicts the binding specificity of different RNA constituents on the protein surface, based only on the structural information of the protein.

  Bio:

  Dr. Xin Gao is an associate professor of computer science in the Computer, Electrical and Mathematical Sciences and Engineering Division at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. He is also a PI in the Computational Bioscience Research Center at KAUST and an adjunct faculty member at David R. Cheriton School of Computer Science at University of Waterloo, Canada. Prior to joining KAUST, he was a Lane Fellow at Lane Center for Computational Biology in School of Computer Science at Carnegie Mellon University, U.S.. He earned his bachelor degree in Computer Science in 2004 from Computer Science and Technology Department at Tsinghua University, China, and his Ph.D. degree in Computer Science in 2009 from David R. Cheriton School of Computer Science at University of Waterloo, Canada.

  Dr. Gao’s research interest lies at the intersection between computer science and biology. In the field of computer science, he is interested in developing machine learning theories and methodologies. In the field of bioinformatics, he group works on building computational models, developing machine learning techniques, and designing efficient and effective algorithms, to tackle key open problems along the path from biological sequence analysis, to 3D structure determination, to function annotation, and to understanding and controlling molecular behaviors in complex biological networks. He has co-authored more than 170 research articles in the fields of bioinformatics and machine learning.

 
网站地图 | 联系我们 | 意见反馈 | 澳门永利高官网下载最高占成
 
京ICP备05002829号 京公网安备1101080060号
4tyc.com 摩杰娱乐会员注册官网 澳门永利高官网下载最高占成 登峰娱乐7777 金冠vip真人
美高梅现金网址导航 鸿利娱乐游戏网址 mg线上娱乐现金充值最高占成 京城天天签到等优惠 大富豪城代理开户最高占成
澳门美高梅体育 乐虎国际投注1元起 大西洋游戏网上直营 凯撒皇宫真钱直营 申博电子总公司
33sbc.com游戏登入 摩斯国际管理网最高返点 申博开户优惠登入 迅达娱乐存款提款 玛雅代理官网最高占成